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Abstract

Transfer learning aims at reusing the knowledge in
some source tasks to improve the learning of a target
task. Many transfer learning methods assume that the
source tasks and the target task be related, even though
many tasks are not related in reality. However, when
two tasks are unrelated, the knowledge extracted from
a source task may not help, and even hurt, the perfor-
mance of a target task. Thus, how to avoid negative
transfer and then ensure a “safe transfer” of knowl-
edge is crucial in transfer learning. In this paper, we
propose an Adaptive Transfer learning algorithm based
on Gaussian Processes (AT-GP), which can be used to
adapt the transfer learning schemes by automatically
estimating the similarity between a source and a tar-
get task. The main contribution of our work is that
we propose a new semi-parametric transfer kernel for
transfer learning from a Bayesian perspective, and pro-
pose to learn the model with respect to the target task,
rather than all tasks as in multi-task learning. We can
formulate the transfer learning problem as a unified
Gaussian Process (GP) model. The adaptive transfer
ability of our approach is verified on both synthetic and
real-world datasets.

Introduction

Transfer learning (or inductive transfer) aims at trans-
ferring the shared knowledge from one task to other
related tasks. In many real-world applications, we ex-
pect to reduce the labeling effort of a new task (referred
to as target task) by transferring knowledge from one or
more related tasks (source tasks) which have plenty of
labeled data. Usually, the accomplishment of transfer
learning is based on certain assumptions and the cor-
responding transfer schemes. For example, (Lawrence
and Platt 2004; Schwaighofer, Tresp, and Yu 2005;
Raina, Ng, and Koller 2006; Lee et al. 2007) as-
sume that related tasks should share some (hyper-
)parameters. By discovering the shared (hyper-) pa-
rameters, the knowledge can be transferred across
tasks. Other algorithms, such as (Dai et al. 2007;
Raina et al. 2007), assume that some instances or
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features can be used as a bridge for knowledge trans-
fer. If these assumptions fail to be satisfied, however,
the transfer may be insufficient or unsuccessful. In the
worst case, it may even hurt the performance, which can
be referred to as negative transfer (Rosenstein and Di-
etterich 2005). Since it is not trivial to verify which as-
sumptions hold for real-world tasks, we are interested in
pursuing an adaptive transfer learning algorithm which
can automatically adapt the transfer schemes in dif-
ferent scenarios and then avoid negative transfer. We
expect the adaptive transfer learning algorithm to at
least demonstrate the following properties:

e The shared knowledge between tasks should be trans-
ferred as much as possible when these tasks are re-
lated. An extreme case is that when they are exactly
the same task, the performance of the adaptive trans-
fer learning algorithm should be as good as that when
it is considered as a single-task problem.

e Negative transfer should be avoided as much as possi-
ble when these tasks are unrelated. An extreme case
is when these tasks are totally unrelated, the per-
formance of the adaptive transfer learning algorithm
should be no worse than that of the non-transfer-
learning baselines.

Two basic transfer-learning schemes can be con-
structed based the above requirements. One is a no
transfer scheme, which discards the data in the source
task when training a model for the target task. This
would be the best scheme when the source and the tar-
get tasks are not related at all. The other is transfer
all scheme that considers the data in the source task to
be the same as those in the target task. This would be
the best scheme when the source and target tasks are
exactly the same. What we wish to get is an adaptive
scheme that is always no worse than the two schemes.
However, given that there are so many transfer learn-
ing algorithms that have been proposed, a mechanism
has been lacking to automatically adjust its transfer
schemes to achieve this.

In this paper, we address the problem of construct-
ing an adaptive transfer learning algorithm that satis-
fies both properties mentioned above. We propose an
Adaptive Transfer learning algorithm based on Gaus-



sian Process (AT-GP) to achieve the goal of adap-
tive transfer. Advantages of Gaussian process meth-
ods include that the priors and hyper-parameters of
the trained models are easy to interpret as well as
that variances of predictions can be provided. Dif-
ferent from previous works on transfer learning and
multi-task learning using GP which are either based
on transferring through shared parameters (Lawrence
and Platt 2004; Yu, Tresp, and Schwaighofer 2005;
Schwaighofer, Tresp, and Yu 2005) or shared represen-
tation of instances (Raina et al. 2007), the model pro-
posed in this paper can automatically learn the transfer
scheme from the data. Our key idea is to learn a trans-
fer kernel to model the correlation of the outputs when
the inputs come from different tasks, which can be re-
garded as a measure of similarity between tasks. What
to transfer is based on how similar the source is to the
target task. On one hand, if the tasks are very simi-
lar then the knowledge would be transferred from the
source data and the learning performance would tend
to the transfer all scheme in the extreme case. On the
other hand, if the tasks are not similar, the model would
only transfer the prior information on the parameters
to approximate the no transfer scheme. Since we have
very few labeled data for the target task, we consider a
Bayesian estimation of the task similarity rather than
point estimation (Gelman et al. 2003). A significant
difference between our problem and multitask learning
is that we only care about the target task rather than
all tasks, which is a very natural scenario in real world
applications. For example, we may want to use the pre-
vious learned tasks to help learn a new task. Therefore,
our target is to improve the new task rather than the
old ones. For this purpose, the learning process should
focus on the target task rather than all tasks. There-
fore, we propose to learn the model based on the con-
ditional distribution of the target task given the source
task, which is a novel variation of the classical Gaussian
process model.

The Adaptive Transfer Learning Model
via Gaussian Process

We consider regression problems in this paper. Suppose
that we have a regression problem as a source task S
with a large amount of training data and another regres-
sion problem as a target task 7 with a small amount

of training data. Let y§3) denote the observed output
(S)

corresponding to the input x;°’ of the it" instance in

the source task and yJ(-T) denote the observed output

of the j* instance X§T) in the target task. We assume

that the underlying latent function between the input
and output for the source task is f(8). Let £(S) be the
vector with n*” element f(5) (xl(-s)) and we have a nota-
tion f(7) for the target task. Suppose we have N data
instances for the source task and M data instances for
the target data, then f(5) is of length N and £(7) is of
length M. We model the noise on observations by an

additive noise term,
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where f() = fO(x()) 1. The prior distribution (GP
prior) over the latent variables f(), is given by a GP
p(f)) = N(£f0]0,K®)), with the kernel matrix K.
The notation 0 denotes a vector with all entries being
Z€ro.

We assume that the noise €(*) is a random noise vari-
able whose value is independent for each observation
y) and follows a zero-mean Gaussian,

p(yO1£0) = N(O170, 80 (1)

where (s and (§; are hyper-parameters representing the
precision (inverse variance) of the noise in the source
and target tasks, respectively.

Since the noise variables are i.i.d., the distribution of

S S
y§ )7 ,y](V))T

observed outputs y(&) = ( and y(7) =

(ygT)7 e 7y§\;))T conditioned on corresponding inputs

£ and £7) can be written in a Gaussian form as

follows
p(yOE) = N(yO IO, 31T)) (2)

where I is the identity matrix with proper dimensions.

In order to transfer knowledge from the source task
S to the target task 7, we need to construct connec-
tions between them. In general, there are two kinds
of connections between the source and the target tasks.
One is that the two GP regression models for the source
and target tasks share the same parameters 0 in their
kernel functions. This indicates that the smoothness
of the regression functions of the source and target
tasks are similar. This type of transfer scheme is in-
troduced in (Lawrence and Platt 2004) for GP models.
Many other multi-task learning models also use similar
schemes by sharing priors or regularization terms over
tasks (Lee et al. 2007; Raina, Ng, and Koller 2006;
Ando and Zhang 2005). The other kind of connection
is the correlation between outputs of data instances
between tasks (Bonilla, Agakov, and Williams 2007;
Bonilla, Chai, and Williams 2008). Unlike the first
kind (Lawrence and Platt 2004), we do not assume
the data in different tasks to be independent of each
other given the shared GP prior, but consider the joint
distribution of outputs of both tasks. The connection
through shared parameters gives it the parametric fla-
vor while the connection through correlation of data
instances gives it the nonparametric flavor. Therefore
our model may be regarded as a semiparametric model.

Suppose the distribution of observed outputs con-
ditioned on the inputs X is p(y|X), where y =
(v, y™M) and X = (X, X)), For multi-task
learning problems where the tasks are equally impor-
tant, the objective would be the likelihood p(y|X).
However, for transfer learning where we have a clear

"We use ) to denote both ¢*) and (7) to avoid redun-
dancy.



target task, it is not necessary to optimize the pa-
rameters with respect to the source task. There-
fore, we directly consider the conditional distribution
p(yD |y X)) X)), Let £ = (£, £7)), we first
define a Gaussian process over f,

p(f|X, 0) = N(f|0,K),
and the kernel matrix K for transfer learning
Knm ~ k(xn’xm)equn,x,ﬂ)p, (3)

where ((Xp,X,) = 0 if x,, and x,,, come from the same
task, otherwise, {(x,,X,,) = 1. The intuition behind
Equation (3) is that the additional factor makes the
correlation between instances of the different tasks are
less or equal to the correlation between the ones in the
same task. The parameter p represents the dissimilar-
ity between S and 7. One difficulty in transfer learning
is to estimate the (dis)similarity with limit amount of
data. We propose a Baysian approach to tackle this dif-
ficulty. Therefore, instead of using a point estimation,
we can consider p is from a Gamma distribution

p~ (b, ).

We now have the transfer kernel as

e —p/n
Knm = ]E K’nm = k n m —C(Xn,xm)p b—1 €
(K] = ken0) [ € o
By integrating out p, we can obtain,
1 b
K k Xp, Xm) | — | , ((Xn, Xm) =1,
%o H00x) () ) =L
k(Xna Xm)7 otherwise.

The factor before kernel function has range of [0, 1].
Therefore, the above form of kernel does not consider
the negative correlation between tasks. Therefore, we
can further extend it into the following form

an ~ k‘(Xn, Xm)(2€_<(xmxm>p - 1)7 (5)

and its Bayesian form

1 b
an = k(xn7xm)(2(m) - 1)’C(Xn7Xm) =1,

E(Xn,Xm), otherwise.
(©)

Theorem 1 shows that the kernel matrices defined in
Equation (4) and Equation (6) are positive semidefinite
(PSD) matrices as long as k is a valid kernel function.
Both transfer kernel models the correlation of outputs
based on not only the similarity between inputs but
also the similarity between tasks. Since the kernel in
Equation (6) has the ability to model negative correla-
tion between tasks and therefore has stronger expres-
sion ability, we use it as the transfer kernel. We will
further discuss its properties in later section.

Thus, the conditional distribution of £(7) given f(5)
can be written as follows

p(EDESD, XD 9) = N (K21 K £ Koz — K21 K7 Ka),

dp.

Kii Ko

where K = Koy K22) is a block matrix. Ki; and

Ko are the kernel matrices of the data in the source
task and target task, respectively. Ko (= K1) is the
kernel matrix across tasks.

Kt Ky
Ko, K22> be a PSD ma

triv with K12 = KZI,.  Then for |\ < 1, K* =

< )\I%; )\II{Z 1;) 1s also a PSD matriz.

Theorem 1. Let K = (

We omit the proof here to reduce space. 2 So far, we
have described how to construct a unified GP regression
model for adaptive transfer learning. In the following
subsections, we will discuss how to do inference and pa-
rameter learning in our proposed GP regression model.

Inductive Inference

For a test point z in the target task, we want to predict
its output value y by determining the predictive distri-
bution p(y|y®),y(?)), where, for simplicity, the input
variables are omitted.

The inference process of the model is the same as that
in standard GP models. The mean and variance of the
predictive distribution of the target task data are given
by

m(x) = kxC 'y, o%(x) =c— kx 'C 'ky, (7)
B Iy 0 _

0 B ) and ¢ =
k(x,z)+ B; ' and ky can be calculated by the transfer
kernel defined in Equation (3). Therefore, m(z) can be
further decomposed as follows

Z ak(x,x;) + Z Aaik(x, %), (8)

XjEX(T) XiEX(S)

where C = K+A and A = (

m(x) =

where A = Q(ﬁ)b — 1 and «; is the i*" element of

C~ly. The first term in the above formula represents
the correlation between the test data point and the data
in the target task. The second term represents the cor-
relation between the test data point and the source task
data where a shrinkage is introduced based on the sim-
ilarity between tasks.

Parameter Learning

Given the observations y(®) in the source task and
y(T) in the target task, we wish to learn parameters
{6;}F_, (P is the number of parameters in the kernel
function) in the kernel function as well as the param-
eter b,y (denoted by Opiq1 and Opio for simplicity)
by maximizing the marginal likelihood of data of the
target task. Multitask GP models (Bonilla, Chai, and
Williams 2008) consider the joint distribution of source

2The proof of the theorem can be found at
http://ihome.ust.hk/~caobin/papers/atgp_ext.pdf



and target tasks. However, for transfer learning prob-
lems, we may only have relatively few labeled data in
the target task and optimize with respect to the joint
distribution may bias the model towards source rather
than target. Therefore, we propose to optimize the con-
ditional distribution instead,

ply Dy, XD, X)), ©)

As we analyzed before, this distribution is also a Gaus-
sian and the model is still a GP. A slight difference
between this model and classical GP is that its mean is
not a zero vector any more and it is also a function of
the parameters.

iy y®, X7 XS ~ N (e, Cy),  (10)
where
e = Koy (Kiy + 021) "y,

2 21y—1 (11)
C; = (Ko + 071) — Ko (Ki1 + 0 1) 7 Ko,

and Ki1(Xp,Xm) = Koo(Xpn,Xm) = k:(xn,xmg and
K21(X7L7Xm) - Kl?(xnaxm) = ]{}(X,,“X"L)(Q(ﬁ) - 1)
The log-likelihood equation is given as follows

1, ~, 1 _ N
Inp(y+6) = ) In ‘Ct|_§(yt—llt)TCt 1(Yt—lit)—5 In(27).

(12)
We can compute the derivative of the log-likelihood
with respect to the parameters,

0 1 _10C,
87& Inp(y|@) = §Tr(Ct 90, )
1 _10Cy __
+ 5(}% — )t 80; C. ' (ye — me)

8ut
00;

+(5,7) " C (ye — )

The difference between the proposed learning model
and classical GP learning models is the existence of
the last term in the above equation and non-zero mean
Gaussian process. However, the standard inference and
learning algorithms can still be used. Thus, many ap-
proximation techniques for GP models (Bottou et al.
2007) can also be applied directly to speed-up the in-
ference and learning processes of AT-GP.

Transfer Kernel: Modeling Correlation
Between Tasks

As mentioned above, our main contribution is the pro-
posed semi-parametric transfer kernel for transfer learn-
ing. In this section, we further discuss its powerful
properties for modeling correlations between tasks. In
general, the kernel function in GP expresses that for
points x,, and x,, that are similar, the corresponding
values y(x,,) and y(x,,) will be more strongly correlated
than for dissimilar points. In the transfer learning sce-
nario, the correlation between y(x,,) and y(x,,) also de-
pends on which tasks the inputs z,, and z,,, come from
and how similar the tasks are. Therefore the transfer

kernel expresses that for points x, and x,, from dif-
ferent tasks, how the corresponding values y(x,) and
y(Xm,) are correlated. The transfer kernel can transfer
through different schemes in three cases:

e Transfer over priors: A — 0, meaning we know the
source and target tasks are not similar or have no
confidence on their relation. When the correlations
between data in the source and target tasks are slim,
what we transfer is only the shared parameters in
the kernel function k. So we only require the degree
of smoothness of the source and target tasks to be
shared.

e Transfer over data: 0 < |A| < 1. In this case, be-
sides the smoothness information, the model directly
transfers data from the source task to the target task.
How much the data in the source task influence the
target task depends on the value of .

e Single task problem: A = 1, meaning we have high
confidence the task is extremely correlated, we can
treat the two tasks to be one. In this case, it is equiv-
alent to the transfer all scheme.

The learning algorithm can automatically determine
into which setting the problem falls. This is achieved by
estimating A on the labeled data from both the source
and target tasks. Experiments in the next section show
that only a few labeled data are required to estimate A
well.

Experiments

Synthetic Dataset

In this experiment, we show how our proposed AT-GP
model performs when the similarity between the source
task and target task changes. We generate a synthetic
data set to test our AT-GP algorithm first, in order to
better illustrate the properties of the algorithm under
different parameter settings. We use a linear regression
problem as a case study. First, we are given a linear
regression function f(x) = wlx + € where wy € R0
and € is a zero-mean Gaussian noise term. The tar-
get task is to learn this regression model with a few
data generated by this model. In our experiment, we
use this function to generate 500 data for the target
task. Among them, 50 data are randomly selected for
training and the rest is used for testing. For the source
task, we use g(xz) = wix +e = (wo + dAwW) x + € to
generate 500 data for training, where Aw is randomly
generated vector and ¢ is the variable controlling the
difference between g and f. In the experiment we in-
crease 0 and vary the distance between the two tasks
Dy = ||w — wyl|r. Figure (2) shows how the mean ab-
solute error (MAE) on 450 target test data changes at
different distance between the source and target tasks.
The results are compared with the transfer all scheme
(directly use all of the training data) and the no trans-
fer scheme (only use training data in the target task).
As we can see, when the two tasks are very similar,
the AT-GP model performance is as good as transfer
all, while when the tasks are very different, the AT-GP
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Figure 2: The left figure shows the change to MAE with
increasing distance with f. The results are compared with
transfer all and no transfer; The right figure shows the
change to A\ with increasing distance with f. We can see

that A is strongly correlated with Dy.

model is no worse than no transfer. Figure (4) shows
the experimental results on learning A under a varying
number of labeled data in the target task. It is inter-
esting to observe that the number of data required to
learn A well (left figure) is much less than the number of
data required to learn the task well (right figure). This
indicates why transfer learning works.

Real-World Datasets

In this section, we conduct experiments on three real
world datasets.

WiFi Localization3: The task is to predict the
location of each collection of received signal strength
(RSS) values in an indoor environment, received from
the WiFi Access Points (APs). A set of (RSS values,
Location) data is given as training data. The training
data are collected at a different time period from the
test data, so there exists a distribution change between
the training and test data. In WiFi location estima-
tion, when we use the outdated data as the training
data, the error can be very large. However, because the
location information is constant across time, there is a
certain part of the data that can be transferred. If this
can be done successfully, we can save a lot of manual
labelling effort for the new time period. Therefore, we
want to use the outdated data as the source task to
help predict the location for current signals. Different
from multi-task learning which cares about the perfor-
mances of all tasks, in this scenario we only care about
the performance of current data corresponding to the
target task.

Wine*: The dataset is about wine quality including
red and white wine samples. The features include ob-
jective tests (e.g. PH values) and the output is based
on sensory data. The labels are given by experts with
grades between 0 (very bad) and 10 (very excellent).
There are 1599 records for the red wine and 4898 for
the white wine. We use the quality prediction problem

3http://www.cs.ust.hk/~qyang/ICDMDMCO07/
“http:/ /archive.ics.uci.edu/ml/datasets/Wine-+Quality
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Figure 4: Learning with different numbers of labeled
data in the target task. The left figure shows the con-
vergence curve of A\ with respect to the number of data.
The right figure shows the change to MAE on test data.
(A* is the value of A after convergence and \* = 0.3

here.)

for the white wine as the source task and the quality
prediction problem for red wine as the target task.

SARCOS?: The dataset relates to an inverse dynam-
ics problem for a seven degrees-of-freedom SARCOS an-
thropomorphic robot arm. The task is to map from a
21-dimensional input space (7 joint positions, 7 joint
velocities, 7 joint accelerations) to the corresponding 7
joint torques. The original problem is a multi-output
regression problem. It can also be treated as multi-
task learning problem by treating the seven mappings
as seven tasks. In this paper we use one of the task as
the target task and another as the source task to test
our algorithm. Therefore, we can form 49 task pairs in
total for our experiments.

In our experiments, all data in the source task and
5% of the data in the target task are used for training.
The remaining 95% data in the target task are used for
evaluation. We use NMSE (Normalized Mean Square
Error) for the evaluation of results on Wine and SAR-
COS datasets and error distance (in meter) for WiFi.
A smaller value indicates a better performance for both
evaluation criteria. The average performance results
are shown in Table 1, where No and All are GP models
with no-transfer and transfer-all schemes, and Multi-1
is (Lawrence and Platt 2004) and Multi-2 is (Bonilla,
Chai, and Williams 2008).

Discussion

We further discuss the experimental results in this sec-
tion. For the task pairs in the datasets, sometimes the
source task and target task would be quite related, such
as the case of WiFi dataset. In these cases, the A param-
eter learned in the model would be large, allowing the
shared knowledge to be transferred successfully. How-
ever, in other cases such as the ones on the SARCOS
dataset, the source and target tasks may not be related
and negative transfer may occur. A safer way is to
use parameter transfer scheme (Multi-1 in (Lawrence
and Platt 2004)) or the no transfer scheme to avoid

Shttp:/ /www.gaussianprocess.org/gpml/data,/



Data No All Multi-1 Multi-2 AT

Wine 1.3340.3 1.3740.7 1.69+0.5 1.27+0.3 1.16+0.3
SARCOS 0.214-0.1 1.584-1.3 0.2440.1 0.26+0.3 0.184-0.1
WiFi 9.184-1.5 5.284-1.3 9.35+1.4 11.9241.8 4.98+0.6

Table 1: Results on three real world datasets. The NMSE
of all source/target-task pairs are reported for the dataset
Wine and SARCOS, while error distances (in meter) are
reported for the dataset WiFi. Both means (before plus)
and standard deviation (after plus) are reported. We have
conduct t-tests which show the improvements are significant
with significance level 0.05.

negative transfer. The drawback of parameter transfer
transfer scheme or no transfer scheme is that they may
lose a lot of shared knowledge when the tasks are simi-
lar. Besides, since multi-task learning cares about both
the source and target tasks with no difference and the
source task may dominate the learning of parameters,
the performance of the target task may even worse than
no transfer case, as for the SARCOS dataset. However,
what we should be focused on is the target task. In
our method, we conduct the learning process on the
target task and the learned parameters would fit the
target task. Therefore, the AT-GP model performs the
best on all three datasets. In many real world appli-
cations, it is hard to know exactly whether the tasks
are related or not. Since our method can adjust the
transfer schema automatically according to the similar-
ity of the two tasks, we are able to adaptively transfer
the shared knowledge as much as possible and avoid
negative transfer.

Related Work

Multi-task learning is closely related to transfer learn-
ing. Many papers (Yu, Tresp, and Schwaighofer 2005;
Schwaighofer, Tresp, and Yu 2005) consider multi-task
learning and transfer learning as the same problem. Re-
cently, various GP models have been proposed to solve
multi-task learning problems. Yu et al. in (Yu, Tresp,
and Schwaighofer 2005; Schwaighofer, Tresp, and Yu
2005) proposed the hierarchical Gaussian process model
for multi-task learning. Lawrence in (Lawrence and
Platt 2004) also proposed a multi-task learning model
based on Gaussian process. This model tries to discover
the common kernel parameters over different tasks and
the informative vector machine was introduced to solve
large-scale problems. In (Bonilla, Chai, and Williams
2008) Bonilla et al. proposed a multi-task regression
model using Gaussian process. They considered the
similarity between tasks and constructed a free-form
kernel matrix to represent task relations. The major
difference between their model and ours is the con-
structed kernel matrix. They consider a point estima-
tion of the correlations between tasks, which may not
be robust when data in target task is small. They also
treat the tasks equally important rather than the trans-
fer setting.

One difference of transfer learning from multi-task
learning is that in transfer learning we are particu-
larly interested in transferring knowledge from one or

more source tasks to a target task rather than learn-
ing these tasks simultaneously. What we concern is
the performance in the target task only. On the prob-
lem of adaptive transfer learning, to our best knowl-
edge, only (Rosenstein and Dietterich 2005) addressed
the problem of negative transfer, but they still failed to
achieve adaptive transfer.

Conclusion

In this paper, we proposed an adaptive transfer Gaus-
sian process (AT-GP) model for adaptive transfer learn-
ing. Our proposed model can automatically learn the
similarity between tasks. According to our method,
how much to transfer is based on how similar the tasks
are and negative transfer can be avoided. The experi-
ments on both synthetic and real-world datasets verify
the effectiveness of our proposed model.
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